### Predictive theory for light-ion reactions

Kostas Kravvaris WANDA January 29, 2021





### **Background**

- We want to provide accurate nuclear data for:
  - Big-bang and solar reaction rates that are difficult to measure
  - Fusion diagnostics
  - Improving accuracy of neutron cross section standards
- Nuclear data here includes: nuclear energy levels, cross sections, angular distributions, polarization observables.
- Goal: Predict low-energy nuclear reactions by solving the quantum-mechanical equations for colliding nuclei made from interacting nucleons.
- Challenge: Simulating a nuclear many-body system is computationally expensive, makes it difficult to do uncertainty quantification of calculations.





### **Computational Needs**

Sole input is the interaction between the nucleons.



Typical runs take up significant part of the machine and require multiple runs.







### **Current Hybrid(CPU+GPU) architectures**

- Moving from traditional CPU-only architecture to GPUs has already resulted in significant speedups.
- Core computation algorithms required re-thinking to reduce memory footprint to minimize CPU-GPU transfers.
- However, at this stage the limited memory of GPU cards hinder moving to heavier systems.

Speedup in calculation of nuclear states.



Nucleus (Dimension)

# Accelerated codes coupled with Gaussian Process emulators allow for uncertainty quantification





#### **GPU-acceleration enables ab initio evaluation of n+<sup>6</sup>Li reactions**





### **Outlook & Prospects**

- Microscopic theories are now at the point where predictions of nuclear properties relevant to nuclear applications can be performed
- Additional effort required to push into heavier systems
- Mixed fidelity emulators to do UQ for expensive calculations?



## Thank you!

